\(\int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx\) [128]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 131 \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=-\frac {2 a^2 (5+4 n) \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f (3+2 n) \sqrt {a+a \sin (e+f x)}}-\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}} \]

[Out]

-2*a^2*(5+4*n)*cos(f*x+e)*hypergeom([1/2, -n],[3/2],1-sin(f*x+e))*(d*sin(f*x+e))^n/f/(3+2*n)/(sin(f*x+e)^n)/(a
+a*sin(f*x+e))^(1/2)-2*a^2*cos(f*x+e)*(d*sin(f*x+e))^(1+n)/d/f/(3+2*n)/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2842, 21, 2855, 69, 67} \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=-\frac {2 a^2 (4 n+5) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right )}{f (2 n+3) \sqrt {a \sin (e+f x)+a}}-\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{n+1}}{d f (2 n+3) \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(d*Sin[e + f*x])^n*(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(-2*a^2*(5 + 4*n)*Cos[e + f*x]*Hypergeometric2F1[1/2, -n, 3/2, 1 - Sin[e + f*x]]*(d*Sin[e + f*x])^n)/(f*(3 + 2
*n)*Sin[e + f*x]^n*Sqrt[a + a*Sin[e + f*x]]) - (2*a^2*Cos[e + f*x]*(d*Sin[e + f*x])^(1 + n))/(d*f*(3 + 2*n)*Sq
rt[a + a*Sin[e + f*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 69

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[((-b)*(c/d))^IntPart[m]*((b*x)^FracPart[m]/(
(-d)*(x/c))^FracPart[m]), Int[((-d)*(x/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m]
 &&  !IntegerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-d/(b*c), 0]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2855

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(c + d*x)^n/Sqrt[a - b*x]
, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[c^2 - d^2, 0] &&  !IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {2 \int \frac {(d \sin (e+f x))^n \left (\frac {1}{2} a^2 d (5+4 n)+\frac {1}{2} a^2 d (5+4 n) \sin (e+f x)\right )}{\sqrt {a+a \sin (e+f x)}} \, dx}{d (3+2 n)} \\ & = -\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {(a (5+4 n)) \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} \, dx}{3+2 n} \\ & = -\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^3 (5+4 n) \cos (e+f x)\right ) \text {Subst}\left (\int \frac {(d x)^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f (3+2 n) \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^3 (5+4 n) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n\right ) \text {Subst}\left (\int \frac {x^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f (3+2 n) \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 a^2 (5+4 n) \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f (3+2 n) \sqrt {a+a \sin (e+f x)}}-\frac {2 a^2 \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 6.53 (sec) , antiderivative size = 5131, normalized size of antiderivative = 39.17 \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\text {Result too large to show} \]

[In]

Integrate[(d*Sin[e + f*x])^n*(a + a*Sin[e + f*x])^(3/2),x]

[Out]

Result too large to show

Maple [F]

\[\int \left (d \sin \left (f x +e \right )\right )^{n} \left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}}d x\]

[In]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(3/2),x)

[Out]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(3/2),x)

Fricas [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e))^n, x)

Sympy [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (d \sin {\left (e + f x \right )}\right )^{n}\, dx \]

[In]

integrate((d*sin(f*x+e))**n*(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**(3/2)*(d*sin(e + f*x))**n, x)

Maxima [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e))^n, x)

Giac [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e))^n, x)

Mupad [F(-1)]

Timed out. \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^{3/2} \, dx=\int {\left (d\,\sin \left (e+f\,x\right )\right )}^n\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2} \,d x \]

[In]

int((d*sin(e + f*x))^n*(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((d*sin(e + f*x))^n*(a + a*sin(e + f*x))^(3/2), x)